Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures.
نویسندگان
چکیده
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO(2) by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [(14)C]benzo[a]pyrene was recovered as (14)CO(2) in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.
منابع مشابه
Biodegradation of Polycyclic Aromatic Hydrocarbons by Aerobic Mixed Bacterial Culture Isolated from Hydrocarbon Polluted Soils
In this study, the degradation potential of five polycyclic aromatic hydrocarbons (PAHs) by aerobic mixed bacterial cultures was investigated. Microorganisms were isolated from hydrocarbon contaminated soils of Shadegan wetland located in southwest of Iran. The degradation experiments were conducted in liquid cultures. PAH or PAHs concentration was 100 mg/L at the beginning of degradation e...
متن کاملBiodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures.
This study evaluates the ability of two bacterial consortia (C2PL05 and BOS08), extracted from very different environments, to degrade low- (naphthalene, phenanthrene, anthracene) and high- (pyrene, perylene) molecular-weight polycyclic aromatic hydrocarbons (PAHs) at high (15-25 °C) and low (5-15 °C) temperature ranges. C2PL05 was isolated from a soil in an area chronically and heavily contami...
متن کاملBiofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons
High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environm...
متن کاملRemoval of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus sp. ATCC38540 in Liquid Medium
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in crude oil, by a white rot fungus, Pleurotus ostreatus sp., in broth culture was investigated. It was found that the biomass of the organism increased with the increase of PAHs concentration in the cultures. In the cultures with 25.99, 49.01 and 80.05 mg.kg-1 PAHs, the degradation increased with the PAHs of low molecular weight concent...
متن کاملارزیابی تجزیۀ زیستی آنتراسن به وسیلۀ Gliomastix sp. جداشده از خاک های آلوده پالایشگاه شازند، ایران
In this study, fungal strains with crude oil biodegradation activity were screened from Shazand oil refinery (Arak). Twelve fungal strains were isolated in PDA medium. TPH assay in the presence of 1% of crude oil showed that the ADH-02 was the most capable strain of oil degradation with an efficiency of 75%. FTIR analysis was revealed that 91% of aliphatic hydrocarbons were degraded by ADH-02. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 3 شماره
صفحات -
تاریخ انتشار 2000